Irfu
|

Dyablo:
Performance portable AMR for

astrophysics

Ramses SNO Days
24/11/2025

Maxime.Delorme@cea.fr

Arnaud.Durocher@cea.fr

Commit authors: Dominique Aubert (ObAS), Lucas Barbier-Goy (CEA), Catherine Blume (CU Boulder), Michel-Andres Breton (CEA), Corentin Cadiou
(IAP), Grégoire Doebele (CEA), Adam J. Finley (ESTEC), San Han (IAP), Olivier Marchal (ObAS), Mike Petrault (CRIStAL), Leodasce Sewanou (CRAL),

Guillaume Tcherniatinsky (IAP)

mailto:Maxime.delorme@cea.fr
mailto:Arnaud.durocher@cea.fr

What is Dyablo ?

The outline:

m Modern code for the modeling of multi-scale/multi-
physics astrophysical fluids

m Written in modern C++ (20 in a couple of days !)
m Relying on Kokkos for performance portability
m Open-source and community-centered

m Benefit from common needs between various
astrophysics fields

m Let’s start from scratch and question everything “we do
as we always did”

" kokkos AFMPI

Community code built from collaborations

GINEA AND DYABLO
D. Aubert' and A. Durocher?

Abstract. GINEA (Groupe d'investigation numérique pour l'exascale en astrophysi
of numeric trophysics simulation codes. During
the Exascale era, the next generation of supercomputers, massively parallel and hybrid, will provide signif-
icant challenges to the current generation of simulation codes. Prototypes and code evolut
investigated and discussed worldwide to prepare for the advent of these machines. Within
w Dyabl the C!
to the hardware agnostic library Kokkos, Dyablo is currently able to ran on multi-GPU architectures with
promising performances and parallel scaling. The features of Dyablo are presented as well as the objectives
of GIN

e) is an initiative

astrophysicists dedicated to the development of future

ions are being

such in-

MR hydrodynamics code, developed

PROGRAMME
DE RECHERCHE &‘(w
ORIGINES

Software engineering concepts

Separation of concerns
m Physicists implementations should not interfere with HPC
m Back-end implementation should be modifiable without rewriting the physics

m Interface between back-end and physics kernels should stay as stable as
possible

High-level abstractions

m Having access to high-level classes hides the complexity of implementation

m Easier implementation of physics without having to bother about memory
layout/management

m Example: The cellindex class manages neighbor finding for AMR

Modularity

m C++ templating + performance portability = long compilation times

{4

m To avoid having to recompile the code (de)activating modules a la Pluto, all
major features of Dyablo are “plugins”

m Plugins are compiled once and can be activated/deactivated at initialization
instead of compilation.

Block-based AMR

FHH F
Cell-based AMR with 382 cells Block-based AMR with 596 cells Patch-based AMR with 836 cells

Source: Dunning et al. 2019; “Adaptive Mesh Refinement in the Fast Lane.”

Advantages of block-based AMR:
m Smaller tree: AMR cycle is faster

m Increased regularity: More conformal faces = easier streamlining for the GPU
m Cell-based still possible by taking blocks of size 1

Block-based

Cell-based 18k octants
600k octants 4x4x4 blocks
600k cells

1100k cells

https://www.sciencedirect.com/science/article/pii/S0021999119308988

Hashmap based neighbor search

Memory layout:

Linear octree: only the leaves (ie blocks) are stored
Space-filling curve: octants are ordered along the Morton Z-curve
All octants are referenced in a hashmap: (i, j, k, level) -> octant_id

Looking for a neighboring octant is simply looking for matching keys in
hashmap:

m Construct the neighbor key, if it exists return the stored id

m If not, construct the neighbor key at level-1

m If still nothing, construct the neighbor key at level+1

Allows the data to live at all times on GPU memory for computation

(0,1,1)

(1,1,1)

(0,0,1)

(2,2,2)

(6,3,3)

(7,3.3)

(6,2,3)

(7.2,3)

(2,0,2)

(6,1,3)

7.1,3)

(6,0,3)

(7,0.3)

11

12

Plugins are feature “bricks”

Every aspect of the code that should be modular
is made as a plugin

Static inheritance and a factory concept to
instantiate the plugins at runtime

Plugins can simple simple objects:

m Dt calculation, refinement criterion, 10 backends, etc.

Or more complex, multi-layered classes

m HydroState + HLLC + Slope limiters +
BoundaryConditions = Hydro policy

m Hydro policy + RK2 scheme = Hydro_RK2 plugin
Plugins are registered in generic factories at
compile time

And selected in .ini file at runtime

HyperbolicPolicy Hydro impl
HyperbolicPolicy State Hydro,

HyperbolicPolicy RiemannSolver Hydro hllc,
HyperbolicPolicy Slope dynamic<HyperbolicPolicy State Hydro>,
HyperbolicPolicy BoundaryConditions Hydro dynamic

HydroUpdate RK2
Hyperbolic RK2<HyperbolicPolicy Hydro>

FACTORY REGISTER(dyablo::HyperbolicUpdateFactory,
dyablo: :HydroUpdate RK2,
"HydroUpdate RK2")

[hydro]

update=HydroUpdate RK2

What is in Dyablo ?

Multiple branches:

m Dev branch with common useful plugins:
m Hydro/MHD(div cleaning)/RHD(M1 explicit) solvers
m Thermal Conduction/Viscosity explicit parabolic solvers
m (self) Gravity update with CG
m Particles CIC, NGP, tracers
m Source terms: basic cooling,

m Community branches:
m Branches led by community applications
m Two main community branches for now

m Feature branches:
m Sub-branches made for implementing features

Double Mach reflection

Developments: cosmo branch

Exclusive features:

m Hydro: Pressure fix (not finalized)

m Source Terms: Cooling using Grackle public tables, turbulent
forcing term (not finalized)

m Particles: Stellar feedback, Star formation
m |Os: Reading from Gadget snapshot (not finalized)

Contributors:

a Dominique Aubert — ObAS "
m Michel-Andres Breton — CEA Saclay

m Corentin Cadiou — IAP
m Olivier Marchal — ObAS

A first galaxy with Dyablo

Video courtesy of: Dominique Aubert, Michel-Andrés Breton, Corentin Cadiou, Olivier Marchal,

-
-

D
Developments: wholesun branch ’

Exclusive features:

m Geometry: [sometric mappings

m MHD: Five-Waves solver from MDLS

m Source Terms: Isothermal atmosphere cooling
m Well-balancing: Alpha-beta well balancing for radial setups

m Setups: Various setups for solar physics ranging from slabs
to radial profiles

Contributors:

m Lucas Barbier — CEA Saclay

m Catherine Blume — University of Colorado Boulder
m Grégoire Doebele — CEA Saclay

m Adam Finley — ESTEC Leiden

Solar like setup with geometry module

Video provided by Grégoire Doebele (CEA Saclay)

Solar-like setup with geometric module simulation (and AMR)

]
=
=
-
e

T

\\.
-
N

ja [
\\\\\\\\\\N

-] e |
e [| oL \

el

T e
EEREEL BT /
mw/wwfw/wy,/
=\
e
=

Edges indicate blocks, not cells !

Other branches (development or future community):

m Multigrid and TSC scheme: Michel-Andres Breton

m Dust/ISM: Benoit Commercon, Leodasce Sewanou

m Base for a future community branch (see maybe Benoit’s talk
(N]VVednesday) s tion", "rhs®, “res", “mask", "phix", ®"phiy", “phiz" }):

;
J]
{"rho","gphi", "field", "solution", "rhs", "res", "mask"}

m Subgrid physics/comparison with Ramses: Florent Bréhard,
Mike Petrault, Jenny Sorce

m Cosmic rays: Yohan Dubois, San Han, Guillaume Tcherniatinsky

m Core features - Passive scalars, hierarchical timestepping,
intermediate level storages: Maxime Delorme, Arnaud Durocher

FieldAccessor FieldInfo> fields info leaves(fields info
ields im psh back({"gx", Igx});
g inf : ack({"gy", Igy});
back({"gz", Igz});
Rack({"phix", Iphix});
fk({"phiy", Iphiy});
ck({"phiz", Iphiz});

intermediate({fields info});

Roadmap for Dyablo v1.0

MULTIGRID PASSIVE SCALARS A2 o DOCUMENTATION BENCHMARKING DYABLO V1.0
TIMESTEPPING
* Integration of the * Passive scalar » Partial integration of * Finalizing contributor * Re-run of all * Public tag
multigrid branch advection regardless of levels guide benchmarks: hydro, * Method paper
* Adaptation of the scheme used * AMR cycle in the » Doxygen/Breathe MHD, cosmo, solar.
general structure for middle of an integration * Clintegration » Comparison with state
of the art

intermediate level cycle
storage/communication

Current and future work

Peripheral developments/activities:
m Numpex:

m ExaDOST (PC3): Sylvain Joube (postdoc) is working on a new solution for compressed AMD data-formats,
visualization and analysis.

m ExaDI (PC5): Dyablo and Samurai (Polytechnique/CMAP) are leading a working group on a series of benchmarks for
modern AMR codes to pinpoint common difficulties

m CEXA/PTC: Jean-Francois David (postdoc) is building analysis tools for the profiling and optimization of large kernels in
Kokkos applications

Future work for the core team:
m Python front-end:
m Being able to fully control the time-loop and let C++ handle the computations
m In-situ analysis:
m Use the supercomputers to calculate diagnostics and first step analysis while the code is running

e

D)
|-
—

|

Thank you

Weak scaling benchmarks

Use case

Solar convection slab :

e 3-7 refinement levels

O Base resolution 128x128x32

O Max resolution 2048x2048x512

o 30.6M cells per domain
Horizontal tiling per MPI process
100 iterations
1 AMR cycle per iteration
No Load-balancing
Scalability tested on Jean-Zay and Ad-Astra [Tier 1
french SC]

O CPU :Intel CSL, AMD Genoa

o GPU :v100, a100, MI250X

O Tested up to 2048 GPUs ~62 billion cells

Replication on N MPI processes

20

Weak scalability for convection runs

Jean Zay GPU (8 x Nvidia A100)

Timers
B Autre
E dt

BN MPIghosts
Il AMR
e
f=n
[—

Viscosity
ThermalConduction
Hydro

runtime (s)

20—

ARl

0 = I |

MPI processes

Ad Astra GPU (8 x AMD MI250x)

40 [—
32 o 32.3 32.9
TR, p—
@
£
A+
E Timers
20 — B Autre
[
mmm MPIghosts
- mm AMR
mmm Viscosity
e ThermalConduction
EEm Hydro
0_ _l — — _' "
1 2 4 8 64 128 256 512 1024 2048

MPI processes

21

Strong scalability benchmark

Use case

Convection on a sphere:

1. Equations:
1. Navier-stokes
2. Thermal conduction
3. Gravity
4. Heating at the center

2. Boundary conditions: Fixed energy flux at surface

3. 51273 fixed resolution (130Mcells), solved on a radial mapping

Warning: Geometry module is still very experimental and
numbers should be taken with a pinch of salt.

—6.8e+01

— 40
— 20

0
-20
-40

= 60
—-80

—-100

—-1.2e+02

22

Strong Scalability

Jean-Zay H100

Strong scaling en 51273 % de temps par noyau sans

I0s

128.00

64.00

32.00

16.00

SPEEDUP

8.00

4.00

2.00

8 16 32 64
NGPUS

1.00
2 4 8 16 32 (7

Speedup Speedup wi’t*%BHgs—.—Perfect scaling Hydro ® Conduction ® Viscosité ®m MPI

Strong Scalability

AD-Astra MI250X

Strong scaling en 51243 % de temps par noyau sans

I0s

128.00

64.00

32.00

16.00

SPEEDUP

8.00

4.00

2.00

8 16 32 64
NGPUS

1.00
2 4 8 16 32 64

Speedup Speedup wi’t‘f\%ﬁHgs =@=Perfect scaling

Hydro ® Conduction ® Viscosité ®m MPI

Strong Scalability

AD-Astra MI300A

SPEE®OP

4.00

Strong scaling en 51273

2

Speedup

4

8 16 KV
Speedup wi’t\f%ﬁtqgs =@=Perfect scaling

64

% de temps par noyau sans
I0s

8 16 Ky 64
NGPUS

Hydro ® Conduction ® Viscosité ®m MPI

25

Strong Scalability

Architecture comparison

Relative time-to-solution wrt h100
(No 10s)

o
S
=4
<
o)
i
t
3
c
2
i
=
o
7]
[
o
-
@
E
i
o
=
whd
i
)
14

1 2 4 8 16 32 64

NGPUS

H100 = MI250X ® MI300A

9 o9 59 o9 o9 o9 59 o9 59 &9 o9

c
9
o)

(&)

©

-

Q
<)
=
L

(&)

o)
i -

'
©

=
O
(&

Rayleigh-Taylor 3D

rho
1.0e+00 2.0e+00

- [

1.0e+00

P

o

08T

0.6

04t

Brio-Wu

Density
. —r — — 8
Athena (reference)

+ Dyablo .

17

16

14

0.0 0.2 0.4 0.6 0.8 1.0

Gas pressure

0.0

0.2

0.8

1.0

1.0

—1.0

Magnetic field (Y-component)

0.0 0.2 0.1 0.6 0.8 1.0

AMR Lewel

29

Heat conduction - Rempel et al 2016

1.0

0.8 1

0.6

Temperature

0.4 1

0.2 1

30

Hierarchical Timestepping

Block 1 Block 2

31

Hierarchical Timestepping

Block 1 Block 2

Advancing time

t1 =tg + Aty

32

Hierarchical Timestepping

Block 1 Block 2

AMR Cycle

33

Hierarchical Timestepping

Block 1 Block 2
io to to to to o |to+ At o+ A
to to
to to to to to to [to+ Aty |t + Aty
to to to to to to |to+ Aty |t + At
to to
to to to to to to [to+ Aty |to+ Aty

Advancing time

ta =1 + At

34

