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Cosmic rays (CRs)

* Proton + Electron + Heavy Nuclei

* Propagate along magnetic field lines
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« Energy equipartition (Ecg ~ £y, =~ E,
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Ruszkowski and Pfrommer 2023



Cosmic rays (CRs)

* Proton + Electron + Heavy Nuclei

* Propagate along magnetic field lines

~ F  )inthe ISM

urb mag

« Energy equipartition (Ecg ~ £y, =~ E,

* Low energy (MeV - GeV) CR is the main source of ionization in embedded protostar regions
(Padovani et al. 2009, 2018, 2022, 2024).



H2 ionization by CRs around protostars
What we thought before

» Uniform background ionization rate: Cy, ~ 10~ 175!

* We assumed external sources (OB stars, Supernovae ... etc.)
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H2 ionization by CRs around protostars

Recent observations

Pineda et al. 2024
o

« Uniform background ionization rate: (3, ~ 10~17g1 T
) | NGC1333 SE :

 We assumed external sources (OB stars, Supernovae ... etc.)  sw©
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* Inhomogenous distribution of ionization rate

Declination (J2000)
—
"N

* External sources + Internal sources (local) pagovani et al. 2009, 2021
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« DCO+(J=3-2), H3CO+(J=3-2) = CHz Cabedo et al. 2023; Pineda et al. 2024




H2 ionization by CRs around protostars

State of the art in protostellar disk simulations
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H2 ionization by CRs around protostars

State of the art in protostellar disk simulations
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Project Goals

Study of Cosmic Ray Transport around Young Protostars

1. How do CRs propagate in protostellar environments?
2. What role does in-situ CR acceleration play?

3. How does CR distribution affect ionization and MHD coupling?



Cosmic ray physics

Advection
OE.,
py +V-F, . =v-(V-P)+0—-A_E,
_ 1 oF, B _1
CR transport equation g Y +V.P, . =— D:l; [F =V (E:l; + P;];)]

Rosdahl et al. 2025 Diffusion Advection

D_,: Diffusion coefficient, ¢: Reduced speed of light (RSOL)

CR cooling A, =7.51 x 1071°(1 + 0.22n, + 0.125f,., )"

Guo et al. 2008, Fitz Axen et al. 2024

10



Simulation strategy

Dense core simulation
CR injection as 1% of L

L

1. Single CR energy approximation

sink,acc

For simplicity: 2. Decoupling the gas and the CRs -> No momentum exchange

3. CRionization rate calculated by post-processing

CH = V ]/l € lL Padovani et al. 2020; Armillotta et al. 2021

// \ T Proton loss function

Proton velocity
CRs number density Averagy energy lost by each proton per ionization event
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Simulation setup

One solar mass isolated collapse

NiMHD (Only Ambipolar diffusion)

Dcg = 10%*em?s™!, &= 1073¢

M=1M,, T=10K

a=E_/E,. =04

rot’ ~grav

:B — EthermaI/ Egrav = 0.04

U = Mass to flux ratio = 3.3

A, = ~1AU (Levels = 6 - 14)

X

B
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Simulation results
Preliminary

e Code works well.

* Evolved 65 Kyr

Time = 58.96 kyr
Sink = 248.82 yr, 0.02 M, 3.346e-05 M yr!
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e 96 cores + ~ 3 months (200,000 CPU hours) on [gem]

the PSMN cluster @ ENS de Lyon

* CRs propagate along the MHD outflow,
building high CR pressure.
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Discussion
Diffusion coefficient (Dcr)

« The CR diffusion coefficient is highly uncertain in star-
forming regions since we cannot observe the CRs in
these regions (Nishio et al. 2025).

« Local CR diffusion speed > ¢, when Dy, is too large.

* The value of Dcr roughly scales as

E 0.5
DCR = 7 X 1020 <m> szs—l- Droge et al. 1999
c

* Also, be careful of the CR diffusion timescale and the
CR cooling timescale.

- CR@ 100 MeV, Dy ~ 10%cm?s™!
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Discussion
Reduced speed of light, RSOL (¢)

» ¢ must be chosen carefully in the simulation (Jiang & Oh 2018; Rosdanhl et al., 2025)

* Evolve CR at the speed of light is computationally expensive
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Pcr Over Pgas

DCR20_C07

Pcr Over Pgas

DCR21_C07

DCR21_C08

102 cm?s~!

Pcr Over Pgas
DCR22_CO07

Pcr Over Pgas
DCR23_CO07

DCR22_C08

DCR23_C08
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B335 protostar

No Keplerian disk > 10 AU -> Magnetic braking or Young age? (Yen et al. 2015)

No evidence of ion-neutral decoupling at scales > 100 AU (Yen et al. 2018)

High ionization rate at r < 1000 AU -> MHD (Cabedo et al. 2023)

DCO+(J=3-2), H18CO*(J=3-2) =
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Simulation results
B335

. M=25M,
- a=035
. f=0.001

 u = Mass to flux ratio = 6.67
« Dop =107, =10"c

* Cosmic rays create the high-pressure region,
which is tilted relative to the rotation axis.

. (:H2 reach 10~ 1%s~! around the protostar,
consistent with observations.
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z [au]

Time = 94.29 kyr
Sink = 220.71 yr, 0.04 My, 1.323e-04 Mg yr!
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Discussion

CR lonization rate

. CR ionization rate can reach 10~ 4s~! and is consistent with observations, while the
typical background value is 10~ 17s~!

* The high CR ionization rate in the simulation matches the observation results.

. The resistivity table in RAMSES only reaches 10™1%s~! (Marchand et al. 2016).

* To ensure self-consistency, we need a new resistivity table for on-the-fly simulation with
RAMSES.

19



Conclusions & Future Plan

* The value of the reduced speed of light needs to be chosen carefully in the star-forming
regions.

* Local CR injection can lead to a high ionization rate around the protostar.
« Momentum exchange will be included.
* We will combine with local chemical and radiation with RAMSES-RT

* We need a new resistivity table due to the high CR ionization rate in the simulation
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