t=-0.02 (yn)

A brief tutorial on 3D
rendering for AMR data

Adnan Ali Ahmad

RAMSES SNO DAYS 2025

1'6«4(/

t = 0.000 kyr

L ______ B | .
ENS DE LYON
,1‘0 \\\
anr agence nationale

de la recherche

* A set of techniques you can use to visualize your
RAMSES/SHAMROCK/DYABLO data

- Particle renderings
- Volume renderings
- Iso-contouring

- 3D printing

- Streamlines

* Available softwares

M ParaView) I\@AL @ lender

ENGINE

Why 3D renders?

* Easier to understand 3D structutres with 3D images...

log(p) [g cm ™3]
-5.22 -5.04 -4.00 -4.68 -4.50

The difficulties

* Most 3D rendering softwares work with point clouds or regular grids

* Most objects are embedded within continious spatial distributions of
matter

* 3D rendering is RAM-heavy

3D renders are easier to understand when interactive: how does one
make a publication-ready 3D figure?

| — Particle rendering

* Very easy to do

 Works well with:

- Tracer particles
- Cell center positions

* Problem: too many particles in simulations, might need to
be selective

| — Particle rendering

Extract cells exceeding density
threshold

| — Particle rendering

1 rho = np.load(path+"rho.npy")

2 pos = np.load(path+"pos.npy")

3 ¢ = # numpy boolean array

4 points = np.transpose([pos[0] [c],pos[1] [c],pos[2][c]])
5 cloud = pv.PolyData(points)

cloud['log(rho) [g/cm”3]'] = np.loglO(rhol[c])

p = pv.PlottexO
8 p-add_mesh(cloud, cmap="magma", clim=None, opacity="linear")

9 p.show()

()]

~

| — Particle rendering

r=30.0 [AU] "
to= 173.19 kyr, tr= 173.23 kyr

s = - -
o ~.¢ . ‘o..;'.l ..'-'. ¢
L] LIPS vee e gy . -l

- - - o L]
Instantanious mass accretion rate 10710 107 '
180° 180° ‘. .
— 10—9 —_ ™
10-1 i
_ -
> 10710 > . .
[} (o]
= p3
1012 7 o °
v -1
Y 10 3 6
> > []
Quu 10-12 Q?n
10-13 <> —
§ | - e
é 10-13 g .
L]
101 3 E
10714 -
180° 180° -
10-15 10715
-
Time integrated mass accretion rate 107
180° 180° -t -»
o ‘-.
10-% &
° i)
= b -
) 0
03 2
N N
a > [)
PO co‘g -
ﬁu 10-6 '711 e
— —
10° = .I. » ’
S]
o] (=]
S = -
) £
’
180° 180° »
- » e

100 1077

Il - Volume rendering

* Generates 2D image from 3D scalar field

* Allows for visualization of data without explicit extraction of
geometrical surface

Transfer function is applied (e.g., sigmoid,
Downey+ 2000 / linear, logarithmic...)

Needs uniformly-spaced dataset

Il - Volume rendering

Step 1: Create a uniformly-spaced grid

Subset of simulation domain

AMR2CUBE

Stacked set of slices xmin = -100; xmax = 100;
ymin = -100; ymax = 100;

1
2
3
4
EBt(:... 5 zmin -100; zmax = 100;
6
7
8
9

import pyvista as pv
stack = np.load(path)

dx = (xmax-xmin)/stack.shapel[0]

dy = (ymax-ymin)/stack.shape[1]

dz = (zmax-zmin)/stack.shape[2]

Create the grid on which PyVista can deposit the data
grid = pv.ImageData()

11 grid.dimensions = stack.shape

grid.origin = [xmin, ymin, zmin]

grid.spacing = [dx, dy, dz]

grid.point_data['scalar'] = stack.flatten(order='C')

Step 2: Load data into software

[
(=}

fuy
N

[y
«w

e
IS

Il - Volume rendering

Step 1: Create a uniformly-spaced grid

Subset of simulation domain = pacity using Py

def update_opacity_distance(val):
AM RZC UBE vr.GetProperty() .SetScalarOpacityUnitDistance(val)
Stacked set of slices

return
etc...

p = pv.Plotter()

vr = p.add_volume(grid, scalars="scalar", cmap="magma", clim=[-4, -1],
opacity="linear", mapper="gpu",
opacity_unit_distance=grid.length / 25,
shade=True, scalar_bar_args={"interactive":Truel})

10 £ = lambda val: vr.GetProperty().SetScalarOpacityUnitDistance(val)

. . 11 p.add_slider_widget(rng=[0, grid.length/4],

Step 3: V|Sual|ze — callback=update_opacity_distance, title="Opacity Distance")

12 p.show_grid()

Step 2: Load data into software

© o] N O (S [w N -

Il - Volume rendering

1373

Il — Volume rendering

t = 0.000 kyr

Ahmad+ 2025c (submitted)

Script run on cluster to
produce animation frames

Il - Volume rendering

t=0.000 days
Ahmad+ 2025b: Birth of a Brown Dwarf

B field Electric current

4353

~ 0.02 AU

B B
100. 575. 1.05e+03 1.52e+03 2.00e+03 1.00e+19 2.51e+21 5.01e+21 7.50e+21 1.00e+22

Collaboration with an Alex Andrix (Artist)

Premiére simulation de la
formation d'une naine brune par
effondrement gravitationnel

@

TERRE &
UNIVERS

Collaboration with an Alex Andrix (Artist)

Snippet 8: Iso-contouring using Pyvista

1 contours = grid.contour (np.arange(rhomin, rhomax+1, .5))
2 smooth_contour = contours..smooth(n_iter=2000, progress_bar=True)

L)
I I I - I S O - C O nto u rl ng 3 g.:dg‘_,;e)i;EZEE'gurs, opacity=.4, clim=[rhomin, rhomax], cmap="viridis")

5 p.show()

ece PyVista LN J PyVista

v

Laplace
smoothing

[ll — 3D printing

Ultimaker Cura

eoe pyvista

v 3% Fast-02mm [-ES

Turbulent eddies at Viewtpe Layerview « | colorscheme. Materialcolor

protostellar surface rom—)
—
e =] o @ 1
ap— T
S)
> © support o (B o
& Adhesion

Current sheets

© 1 hours 18 minutes]
© e v250m

Save to Disk

v

lll — 3D printing

lll — 3D printing

INES

[ll — Streaml

Interactive streamlines of magnetic vector field near brown dwarf

* Vector field instead

of scalar field

\

* Requires quite a bit

\

S

of fine-tuning to find

good starting
positions

W i

9——5—5‘5————

!

)

.

i \\\\\\\\\

- =
\\\\

=

Il — Streamlines

Final publication-ready render
Ahmad+ 2025b

* Vector field instead
of scalar field

~

BmaxLos

* Requires quite a bit
of fine-tuning to find
good starting
positions

500
250
B [G]
—250
=500
=150

—1000

Il — Streamlines

* Vector field instead -
of scalar field

* Requires quite a bit
of fine-tuning to find
good starting
positions

Static streamlines of velocity vector field in outflow

| Radiial velosity (km/s)

t=-0.02 (yn)
Some examples of
combinations

Ahmad+ 2024

Birth of a protostar and disk

Some examples of
combinations

Tracer particles in outflow
cavity

Summary

* Lots of techniques available for 3D visulizations
* Play with low-resolution data locally

* Deploy pipelines on clusters

