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* A set of techniques you can use to visualize your
RAMSES/SHAMROCK/DYABLO data

- Particle renderings
- Volume renderings
- Iso-contouring

- 3D printing

- Streamlines

* Available softwares
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Why 3D renders?

* Easier to understand 3D structutres with 3D images...

log(p) [g cm ™3]
-5.22 -5.04 -4.00 -4.68 -4.50




The difficulties

* Most 3D rendering softwares work with point clouds or regular grids

* Most objects are embedded within continious spatial distributions of
matter

* 3D rendering is RAM-heavy

3D renders are easier to understand when interactive: how does one
make a publication-ready 3D figure?



| — Particle rendering

* Very easy to do

 Works well with:

- Tracer particles
- Cell center positions

* Problem: too many particles in simulations, might need to
be selective



| — Particle rendering

Extract cells exceeding density
threshold




| — Particle rendering

1 rho = np.load(path+"rho.npy")

2 pos = np.load(path+"pos.npy")

3 ¢ = # numpy boolean array

4 points = np.transpose([pos[0] [c],pos[1] [c],pos[2][c]])
5 cloud = pv.PolyData(points)

cloud['log(rho) [g/cm”3]'] = np.loglO(rhol[c])

p = pv.PlottexO
8 p-add_mesh(cloud, cmap="magma", clim=None, opacity="linear")

9 p.show()
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| — Particle rendering
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Il - Volume rendering

* Generates 2D image from 3D scalar field

* Allows for visualization of data without explicit extraction of
geometrical surface

Transfer function is applied (e.g., sigmoid,
Downey+ 2000 / linear, logarithmic...)

Needs uniformly-spaced dataset




Il - Volume rendering

Step 1: Create a uniformly-spaced grid

Subset of simulation domain

AMR2CUBE

Stacked set of slices xmin = -100; xmax = 100;
ymin = -100; ymax = 100;

1
2
3
4
EBt(:... 5 zmin -100; zmax = 100;
6
7
8
9

import pyvista as pv
stack = np.load(path)

dx = (xmax-xmin)/stack.shapel[0]

dy = (ymax-ymin)/stack.shape[1]

dz = (zmax-zmin)/stack.shape[2]

# Create the grid on which PyVista can deposit the data
grid = pv.ImageData()

11 grid.dimensions = stack.shape

grid.origin = [xmin, ymin, zmin]

grid.spacing = [dx, dy, dz]

grid.point_data['scalar'] = stack.flatten(order='C')

Step 2: Load data into software
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Il - Volume rendering

Step 1: Create a uniformly-spaced grid

Subset of simulation domain = pacity using Py

def update_opacity_distance(val):
AM RZC UBE vr.GetProperty() .SetScalarOpacityUnitDistance(val)
Stacked set of slices

return
etc...

p = pv.Plotter()

vr = p.add_volume(grid, scalars="scalar", cmap="magma", clim=[-4, -1],
opacity="linear", mapper="gpu",
opacity_unit_distance=grid.length / 25,
shade=True, scalar_bar_args={"interactive":Truel})

10 £ = lambda val: vr.GetProperty().SetScalarOpacityUnitDistance(val)

. . 11 p.add_slider_widget(rng=[0, grid.length/4],

Step 3: V|Sual|ze — callback=update_opacity_distance, title="Opacity Distance")

12 p.show_grid()

Step 2: Load data into software
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Il - Volume rendering

1373




Il — Volume rendering

t = 0.000 kyr

Ahmad+ 2025c (submitted)

Script run on cluster to
produce animation frames




Il - Volume rendering

t=0.000 days
Ahmad+ 2025b: Birth of a Brown Dwarf

B field Electric current

4353

~ 0.02 AU
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Collaboration with an Alex Andrix (Artist)

Premiére simulation de la
formation d'une naine brune par
effondrement gravitationnel
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Collaboration with an Alex Andrix (Artist)




Snippet 8: Iso-contouring using Pyvista

1 contours = grid.contour (np.arange(rhomin, rhomax+1, .5))
2 smooth_contour = contours..smooth(n_iter=2000, progress_bar=True)

L)
I I I - I S O - C O nto u rl ng 3 g.:dg‘_,;e)i;EZEE'gurs, opacity=.4, clim=[rhomin, rhomax], cmap="viridis")

5 p.show()

ece PyVista LN J PyVista

v

Laplace
smoothing




[ll — 3D printing
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lll — 3D printing




lll — 3D printing




INES

[ll — Streaml

Interactive streamlines of magnetic vector field near brown dwarf

* Vector field instead

of scalar field
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* Requires quite a bit
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Il — Streamlines

Final publication-ready render
Ahmad+ 2025b

* Vector field instead
of scalar field
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* Requires quite a bit
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Il — Streamlines

* Vector field instead -
of scalar field

* Requires quite a bit
of fine-tuning to find
good starting
positions

Static streamlines of velocity vector field in outflow

| Radiial velosity (km/s)




t=-0.02 (yn)
Some examples of
combinations

Ahmad+ 2024

Birth of a protostar and disk




Some examples of
combinations

Tracer particles in outflow
cavity




Summary

* Lots of techniques available for 3D visulizations
* Play with low-resolution data locally

* Deploy pipelines on clusters



