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Current modeling of CRs

* In RAMSES, CRs are modeled according to a « grey approach »

* But cooling processes and diffusion depend on momentum
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* To better understand the dynamics of CRs within galaxies, we propose to model the
momentum distribution function f(p, f) and follow its evolution
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Based on Girichidis et al. (2020)

- Piece-wise power law distribution function
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Equations on distribution function f

foe,p, u,t) = folx, p, t) + 3ufy(x, p, 1) withuy =p. b the CR particle pitch angle
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S, p,pu, 1) = folx, p, 1) + 3ufi(x, p, 1)

Equation evolving the isotropic part of f:

Equation evolving the anisotropic part of f:

u : gas velocity

v : CR particle velocity

DW: scattering rate

Dﬂp: streaming transport

Jo.1: CRinjection
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Radiative losses Streaming losses
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Equations on distribution function f
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Equations on distribution function f
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Update in momentum

* Flows in e and n between bins
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* Coulomb losses: dominate at low momentum

(p < 1 GeV/c)

* Hadronic losses: dominate at high momentum

(p > 1 GeV/c)

Application: Free cooling test
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Application: 1D diffusion test

* High-momentum CRs diffuse faster than low-momentum CRs

Correction on the diffusion coefficient
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CR two-moment -

(Rosdhal+23)

Shock tube
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CR spectral method



0.5
p _
: =3x 102 —— cm2s~!
K(p) <1GeV>

250

100 MeV

Eqn = 1071 erg

— -3
Ng,s = 10cm

150

(B) ~ 0.025 uG

100

50

8 , ' '
100 GeV

200 SN
150 @
100 o

50 4

y 1 v i o | 1 ¥ i Jo | 1 ¥ 3 e WA it D T TN e N
100 150 200 25 100 150 200 250 100 150 200 25 100 150 200 250



* Development and implementation of the spectral method for CRs in RAMSES
* Different idealized tests validate this method

 Simulation of supernovae

Next step: study momentum deposition of SNe with CRs (Rodriguez Montero et al.
2022)
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