Can simulations
quench enough
early massive
galaxies?
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Surprises from JWST
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Getting the right quenching statistics

...is hard! HAGN Massive quenched galaxy density
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Re-simulating massive quenched HAGN galaxies
Re-simulate Horizon-AGN galaxies ‘geisasssss
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Re-simulating massive quenched HAGN galaxies
Do the zooms quench? - o main soquence
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Re-simulating massive quenched HAGN galaxies
Surprises and growing black holes
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GAS DENSITY

Problem with the model?

AGN Feedback

e.g. More effective coupling?, Farcy+25

BH Accretion
e.q. Torque limited accretion, Angles-Alcazar+17
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S | Star formation

and feedback?
e.q. Weaker stellar feedback




SFR, Me/yr

Let’s throw In the kitchen sink... Gan | quench?
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But at what cost?

Too much star formation

Gentler feedback sources?
...Stay tuned !

Stellar mass to halo mass ratio
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Work by Arturo Nunez-Castineyra

Problem with the numerics?
Forcing the black hole into dense clumps
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Problems with the comparisons to observations?

Observational biases Lewis+25, in prep

How do UV-J cuts and photometric sSFR cuts perform?

What if star formation is in faint features?
Could we miss it?

Mock observations of my simulations with RASCAS
(MD+20)

0.5"/12.9 ckpc

With proper PSFs, resolution and noise —

SE++ detections + LePhare photometry -

False color NIRCAM image of a z=2 spiral
from my simulations 11




« Pretty » NIRCAM 30 mag depth
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Pipeline

Rascas
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Pipeline
Flats with real noise
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Pipeline

Z_BEST from LePhare

Redshift Recovery from LePhare
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