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Why should we care about cosmic rays?
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particle energy / shock energy

Equipartition of energies (kinetic ~ thermal ~ magnetic ~ cosmic rays) in
galaxy formation problems: intra-cluster medium, active galactic nucleijets,
galactic winds, interstellar medium

As a relativistic population of particles their adiabat and lossés are different
from that of the gas

Diffusion is a key aspect of cosmic ray transport

Cosmic rays are produced at shocks:
supernovae, jets, cosmic infall

More momentum in SN explosions
Important heating mechanism in the diffuse ISM

Sets the electron fraction at high cloud densities due to CR ionisation losses
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CR particle individual speed
is ~c, however,

the CR fluid velocity is
{Ugas+Ua + a diffusion speed}
due to efficient CR
scattering with Alfvén waves
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CR-driven large-scale galactic winds

Better match to observations w/ CRs
More mass removed by galactic winds
Winds are CR pressure-dominated
Winds are faster and denser, colder

CRs reduce the amount of dense SF gas
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Cosmic ray magneto-hydrodynamics
1-moment already in RAMSES (Dubois & Commercon 2016, 2019)
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Cosmic ray magneto-hydrodynamics

2-moment, now added to RAMSES: Rosdahl et al. just on arXiv
based on Jiang&Oh (2017) in ATHENA, and similar to Chan et al. (2019) and others
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Cosmic ray magneto-hydrodynamics

2-moment, now added to RAMSES: Rosdahl et al. just on arXiv
based on Jiang&Oh (2017) in ATHENA, and similar to Chan et al. (2019) and others
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Cosmic ray magneto-hydrodynamics

2-moment, now added to RAMSES
based on Jiang&Oh (2017) in ATHENA, and similar to Chan et al. (2019) and others
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Some dark magic, not detailed here...



Cosmic ray magneto-hydrodynamics

2-moment, now added to RAMSES
based on Jiang&Oh (2017) in ATHENA, and similar to Chan et al. (2019) and others
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Cosmic ray magneto-hydrodynamics

2-moment, now adding to RAMSES
based on Jiang&Oh (2017), Chan et al. (2019) and others

% v . (=0,
ot

ag’t") + V- (ovw — BB + P¥)
= xHE —v - (El + R)],

%—f+V'[(E+P*)V—B(B-V)]
4w (VR Source terms
OB V x (v x B) = 0 - Advection and source terms are ‘operator’ split
— -V x ¥ xB)=0,
ot
OF - xis defined in the coordinate-systemof B K — [lﬁ:H KR, IiJ_]
<+ V-E
ot ’
=w+w)- (V- -R)+0, - so must rotate F, v, vs onto B, solve, and rotate back
1 OF. e .
7 + VR - Implicit time integration for coupled source terms
= — " '[E —v - (El+R)).




Adding 2mom CRs to RAMSES

Hydro only

- Two fine steps for every coarse steps, starting at
finest level

Fine cells —> /CKAI /@\3. /&KM /ka trax

Coarse cells 3 K—

t t+At
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Adding 2mom CRs to RAMSES

Hydro + CRs

- CRs sub-cycled on each level

- Almost all the additions are in Finecells ___
cr_godunov_fine.f90 and cr_flux_module.fo0

- Call to crmom_step inside the amr_step routine

- CR sub-cycling precludes exact CR energy
conservation across refinement boundaries

Coarse cells —— KF—

t t+At
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Variable speed of light

- We must have V., > ¢yvmp

- It’s difficult to know in advance what will be the maximum ¢y, SO We use a variable light-speed, setting in
every MHD step in every refinement level:

Vin = Neymp

- For the tests, we typically need N 2 10
- But for isolated galaxy test, the results are converged with N = 3
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Tests



Tests

Advection + Diffusion in 1d

- Diffusion can be compared to analytic expression, in

dotted curves

- With AMR and moving gas
- .E
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Tests
Pure streaming in 1d

- CRs stream down their own gradient of CR energy
U, = — UxSIgN (b. Vec>

- At CR energy extrema u, becomes discontinuous as
they flow in opposite directions due to streaming
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- 5122 resolution

Tests

Anisotropic diffusion in 2D
t=0.26
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- Diffusion only
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- 10242 resolution

Tests
Anisotropic diffusion in 2D

- Diffusion only




- 10242 resolution

Tests
Anisotropic diffusion in 2D

One —moment, 1024 x 1024
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- Diffusion only




u;=0

Tests -

1D shock tube | 777 RAMSES 1-mom

0.6 T T T T T

- SOD tube generated by CR pressure difference

- Here no diffusion, no streaming

- Well behaved and compares well with other methods
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Tests

1D shock tube 1 _.:A 2-mom |

SOD tube generated by CR pressure difference

Here no diffusion, no streaming

Well behaved and compares well with other methods 25{ __ o s 5 |

It miserably fails if we follow standard Athena method

Gas momentum injection rate: % 1.0
 (ov) — RAMSES * 054
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Tests

1D shock tube with streaming

SOD tube generated by CR pressure difference

Here no diffusion, streaming with 1, > Ui

Well behaved and compares well with other methods

The density dip at x~0 is due to CR streaming losses
at rate L_ZS . VPC : CR energy is given to gas energy,
but since y > ¥,, the gradient of total pressure
increases locally

Shock and rarefaction waves now move at u & u,
respectively
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Tests

1D cloud with streaming
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Tests

3D Sedov with anisotropic diffusion

e. [erg/cm?3] p [g/cm?3] P, [erg/cm?3] Refinement level
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Tests

3D Sedov with isotropic diffusion
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Tests

Isolated “G9” galaxy disk
described in Farcy et al. (2022)

P
H’

- M-=10° Mg galaxy with 18 pc resolution
- x=3x1028 cm2/s

- Compared with Tmom and 2mom in RAMSES
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Tests

Isolated “G9” galaxy disk
described in Farcy et al. (2022)

M-=10°9 Mg galaxy with 18 pc resolution
x=3x1028 cm?2/s

Compared with Tmom and 2mom in RAMSES

In good quantitative agreement
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Conclusions and summary

2-moment Cosmic Rays in RAMSES
- Lower perpendicular numerical diffusion than 1-mom
- Performance:
- For the constant diffusion galaxy run it is equally good in CR 2-mom and 1-mom (but depends
on the speed of light)
- 2-mom outperforms 1-mom for CR streaming runs (or with variable diffusion)
- Not yet in the public version, but we are happy to share
- The implementation is memory-heavy with 4 variables per CR group!

Recent developments

- Fluid frame approach with « NENER » (behaves better in the limit of ¢ S Vp9)

- Now use M1 (the closure in CR transport is not as critical as in RT)

- Works with shock finder + injection (from Dubois+19)

- CR spectral method developed by Nimatou Diallo (|AP)

- Currently implemented in Dyablo by San Han (IAP)

- Variable diffusion coefficient by Arturo Nunez-Castineyra (IAP)

- Can be used for thermal conduction with two-temp. ion-elec. (Appendix F of the paper)
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