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Typical path from sims to observations
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Megatron suite of simulations
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Ne VIII

.
Megatron suite of simulations
1. On-the fly radiative transfer,
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Ne VII Ne VIII
Megatron suite of simulations
1. On-the fly radiative transfer,
2. 81-ions non-equilibrium thermochemistry,
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Ne VII

Ne VIII
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Megatron suite of simulations

1. On-the fly radiative transfer,

2. 81-ions non-equilibrium thermochemistry,

3. Chemical enrichment from SN and stellar winds,
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Ne VIII
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1. On-the fly radiative transfer,
2. 81-ions non-equilibrium thermochemistry,
3. Chemical enrichment from SN and stellar winds,

4. Milky-Way progenitor,
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Ne VIII

«

1. On-the fly radiative transfer,
2. 81-ions non-equilibrium thermochemistry,
3. Chemical enrichment from SN and stellar winds,

4. Milky-Way progenitor,
5. 4 "high-resolution” sims at 10 pc comoving,

Megatron suite of simulations
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* Megatron suite of simulations
1. On-the fly radiative transfer,
2. 81-ions non-equilibrium thermochemistry,
3. Chemical enrichment from SN and stellar winds,
4. Milky-Way progenitor,
5. 4 "high-resolution” sims at 10 pc comoving,
6. 3+2 “low-z" sims at 23 pc proper.
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Mocks in absorption:
Main object, z = 4, raw file outputs, no postprocessirg
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Main object, z = 9, w/ nebular cont. Pyneb (Luridiana+15) & coll.

Chianti (Del Zanna+21)




The Megatron suite of simulations
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The Megatron suite of simulations
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The Megatron suite of simulations

3+2 "low"-z CGM
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RTZ model

dn;
dTZ = Nj+10;+1Me + (;[niﬂfiﬂ + nilXil]nk;> + nz‘—l(ﬁz‘—1ne + I‘Z._l)

— NiNe — (Z[ni& + niXi]”k) —n;i(Bine + 1)

k
X" +e = X (recombination)

X"+Y > X+Y" (charge exchange recombination)
X +Y - X+Y" (charge exchange ionization)

X +e* —= X' +2e (collisional excitation)

X +hvy— X" +e  (photoionization)

Processes spec1es processes specnes spemes

— Z anfk— Z Y y:nm]Ak

Katz 22, Katz+22, Katz+CC+24




RTZ model

dn;
dTZ = MNj+10G+1Me + ;[mﬂ&ﬂ +ni1xio1me |+ nio1(Bicine + 1)

— niaine — | Y _[mi&i +nixilng | — ni(Bine +T)

k
dE processes species processes species species
E m— E E nZI‘k — E ;J ;J nmjAk
k 1 k 1 J
e CR heating e H+He cooling
. photohgating e H, cooling
* H; heating ¢ metal-line cooling

CO cooling + dust recombination + grain-gas
collisional cooling

Katz 22, Katz+22, Katz+CC+7



State of the CGM of a MW
progenitorat z~3 -4
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RTZ model

dn;
dT: = N;+10+1Me + (;[mﬂ&ﬂ + nilXil]nk) +ni_1(Bi1me + T 1)

— NiNe — (Z[niﬁi + niXi]”k) —n;i(Bine + 1)

k

Out of equilibrium

Depends on past thermochemical state
Depends on local radiation field through T’
e |on-ion dependencies
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dni
dt

dnz-
dit

RTZ model

+ <Z[ni+1§z‘+1 + ]nk> + ni—1(Bi—1me + )

k
— — (Z[nz& + ]nk> —n;(Bine + I';)
k
Photoionization equilibrium
= Nj+104+1Me + M1 (5z’—1’ne + Fi—l)
— NN —ni(Bine + 1Y)
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RTZ model

d’l’Li
s + (Z[ni+1§z‘+1 +

k

]nk> +ni-1(Bi-1Me + )

_ — (Z[nz& + ]’nk> - ni(ﬁine + )

k

Photoionization equilibrium

0= Mi110G11Me T nz‘—l(ﬁz’—lne + Fi—l) -

e |n equilibrium
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RTZ model

ddqzi — + (%:[niﬂfiﬂ + ]nk) +ni1(Bi—1me +
- — (Z[ni&- + ]W) —ni(Bine + 1)
k

Photoionization equilibrium

0=n;10i1ne + nz’—l(ﬁi—me =+ Fi—l) — N;0Te — ni(ﬂine T Fz‘)

e |n equilibrium
® SUPPOSE ne = nHn + NHell + 2NHe I
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RTZ model

dn.
dfnZ — T <zk:[ni+1§i+l + ]nk) + ni—1(Bi—1me +
— — (Z[nz& + ]'%) —ni(Bine + I';)
k

Photoionization equilibrium

0=n;10i1ne + nz’—l(ﬁi—me =+ Fi—l) — N;0Te — ni(ﬂine T Fz‘)

e |n equilibrium
® SUPPOSe N, = NHI + NHeTl + 2NHe I
e Suppose I' is UV background only
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CGCMatz~3-14
Is the CGM in equilibrium?
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Relax to photo-ionisation equilibrium (PIE)
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CGCMatz~3-14
Is the CGM in equilibrium?
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CGMatz~3 -4
Is the CGM in equilibrium?

dn;
d_tl = Mip1Qiy1Me + (Z[ni+1§i+1 + nz’lXil]nk) +ni1(Biine + 1 1)
k

— QN — (Z["z& + niXi]”k) —ni(Bine + 1)

k

. . =
10%° 10'° 10%7
No 111 [C m- _)]

10 kpc

*r—e

v Pt naone e Eo) = e mm(Ene )

Relax to photo-ionisation equilibrium (PIE)
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Is the CGM in equilibrium?
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CGMatz~3-4
Is the CGM in equilibrium?

Assuming PIE = biased
towards colder/denser
gas
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Is the CGM in equilibrium?
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CGMatz~3-4
Is the CGM in equilibrium?
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Is the CGM in equilibrium?
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GM out of equilibrium: why?

1. Local radiation dominate locally
over UVB
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CGMatz~=3-14
CGM out of equilibrium: why?
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https://s3.amazonaws.com/media-p.slid.es/videos/1468957/MWIL2nTl/hero_phys_dir2.mp4

Upcoming:
MEGATRON data
release



Data viewer

Requirements:

e ¢ interactive,
e ¢ handles raw data

e ¢ everything local — except data.

—_—

\ 4
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3D viewer

Requirements:

v interaction-before-accuracy,
v GPU-accelerated,
v up to millions of AMR cells,
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Take-home messages




Take-home messages

e Megatron simulation suite
200,000+ spectra in 4 “ISM” runs (z £, 8) = Katz, CC+25

3+1 “CGM" runs (z £ 3.5) = CC+25
Link to low-z UFDs = Rey, ..., CC+25
Properties of Pop. Il stars = Storck, ..., CC+25

Sensitivity of line diagnostics to subgrids = Choustikoy, ..., CC+25
Origin of steep g slopes = Katz, CC+ (in prep)
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Properties of Pop. Il stars = Storck, ..., CC+25

Sensitivity of line diagnostics to subgrids = Choustikoy, ..., CC+25

Origin of steep g slopes = Katz, CC+ (in prep)

e CGM (incl. inner CGM!) is out-of-equilibrium
Assuming PIE leads to 0.5 dex (median), and factors of
2-3x on individual line of sight




Take-home messages

e Megatron simulation suite
200,000+ spectra in 4 “ISM” runs (z £, 8) = Katz, CC+25

3+1 “CGM" runs (z £ 3.5) = CC+25

Link to low-z UFDs = Rey, ..., CC+25

Properties of Pop. Il stars = Storck, ..., CC+25

Sensitivity of line diagnostics to subgrids = Choustikoy, ..., CC+25

Origin of steep g slopes = Katz, CC+ (in prep)

e CGM (incl. inner CGM!) is out-of-equilibrium
Assuming PIE leads to 0.5 dex (median), and factors of
2-3x on individual line of sight

e Data release = CC+ (in prep)
v/ Pre-computed spectra, halo catalogues, cut-outs
v/-ish data viewer + 3D viewer
%% JWST images, ALMA Cubes, RASCAS post-processing (fese, L1, --.)
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