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STAR FORMATION, DISK EVOLUTION AND PLANET FORMATION

The first seeds for planets may form in less than a few million years

Taurus molecular cloud (ESA/Hubble) HD143006 (Andrews et al., 2018) PDS 70 (Isella et al., 2019)

ALMA

MUSE/VLT

dust growth

Size

Dust growth must be an efficient process !



3D SIMULATIONS WITH DUST COAGULATION/FRAGMENTATION
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3D SIMULATIONS WITH DUST COAGULATION

Marian Smoluchowski (1872-1917)

J'..—i
'+._. ‘.'. .+{ ‘.

S - -
2 on(m,t) 1" =
1 T THASSES ———=—| Km',m—m"n(m',tyn(m —m’, t)dm’ — n(m,t) | K(m,m")n(m’,t)dm’
n : number density ot 2 0 0
of particles per :
mass unit gain loss
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In astrophysics: K(m, m,) = o(m,, m,)Av(m;, m,) = need numerical solutions

Requirements

0 3 orders of magnitude in size (Ium - Imm ) < 9 orders in mass

0 mass range discretization — 20 mass bins (low numerical cost)



HIGH ORDER NUMERICAL SCHEME

Dlscontmuous Galerkm scheme
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constant polynomials

—high accuracy

—few number of mass bins
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BENCHMARK COALA

Lombart & Laibe (2021), Laibe & Lombart (2022)

additive kernel: K(my, m;)=m; + m,
o]

107 ;

() == initial condition

10 = eXact solution, tsinal

(@) Dustpy N=19 a tiinal

O Coalaordre 1, N=19, a tfnal

10741 o

=
o

mass density distribution

=
9
(o)}

. . . L .
108 10°° 10~ 1072 10°
mass m

(linear piecewise
approximation)

COALA
VS

Requirements
& 9 orders of magnitude in mass
& 10-20 dust size bins

3D simulations with
polydisperse coagulation %




DUST GROWTH IN PROTOSTELLAR COLLAPSE

RAMSES MHD model of B335-like
protostar

gas & dust (40 bins)

Lombart et al., 2025 (minor revisions)
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DUST GROWTH IN PROTOSTELLAR COLLAPSE
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Initially (MRN distribution):
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After 100 kyrs:
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DUST FRAGMENTATION MODEL

Destructive fragmentation Mass transfer Mass transfer + cratering
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' Safronov, 1972; Jones et al., 1996; Suttner et al., 2001; Blum, 2006; Hirashita et al., 2009; Rafikov et al., 2020

Conservative form (Lombart et al. 2024): Bukhari Syed et al. 2017
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DUST FRAGMENTATION MODEL

Lombart et al. 2024

Benchmark for le-1 =0 \ le-1 T'=1.0e — 04 i T=6.0e—03  1e3
. o>, | ——° Analytic ; 6 | l_‘;
fragmentation 23 k=0 | | 4
c 5 1) | 1 2 1
3 L \ { 1] -3 { L
ﬁ 11 II -l|- 2] T |\ 4{ ‘\ T |‘
EQ __;r \ o 74 15 S -\: _L |
Feingold et al., 1988 || Analytic /\ 6
Ku,v)=1 |

bw,u,v) = yz(u +v)e "

mass density g
I—‘I N

2/ U\_

o
o

w

L
mass density g
N

general non-linear
fragmentation 0 0

=
N

i i —=- Analyti 61
3D simulations , k”=a2y ic
with polydisperse , 4

106 104 102 10° 102 10-® 10~* 10-2 10° 102 10° 10~* 10-2 10 102
mass X mass X mass X




DUST MODEL IMPROVEMENT

Growth and fragmentation of multi-component dust aggregates




MULTI-COMPONENT DUST COAGULATION
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DUST AGGREGATION

—porous size (V)
— compact size (V7)

Dust aggregate is defined by its i .
Sl y i? Need 2D Smoluchowski
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FRAGMENTATION OF MULTI-COMPONENT DUST AGGREGATES

Multi-component dust:
— how to model the composition of fragments ?

Dust aggregates:
— how to model the mass and porosity of the fragments ?

|Need data from lab experiments
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' Blum, 2006; Ormel et al., 2007; Okuzumi et al., 2009; Hirashita et al., 2021; Hasegawa et al., 2022



CHARACTERIZING DUST EVOLUTION DURING THE DISK-BUILDING STAGE

Carpine et al., 2025 @& ):THEMIS
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TAKE HOME MESSAGES

e The size evolution of dust particles are modeled by Smoluchowski-like equations.

e 3D simulations with polydisperse dust coagulation/fragmentation M
© 9 orders of magnitude in mass (1um - Imm) ?
e Few number of bins ~ 20
e Good accuracy

e Dust grains are predicted to grow by 2 orders of magnitude in collapsing @R@
envelopes (just gravity/turbulence, without magnetic effects yet)

e Coagulation/fragmentation of dust aggregates and multicomponent dust can be
modeled by 2D extension.

e PEBBLES: realistic synthetic observations by combining simulations, radiative
transfer with realistic dust optical properties



