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The matter cycle in the ISM
Warm Neutral Medium (WNM)  Cold Neutral Medium (CNM) Molecular clouds

T~10-50 K
ng ~ 10% — 10° cm™

4 N
— X — (e
T ~ 5000 K / \

ng ~ 0.6 cm™®

3

T ~100 K

ng ~ 30 cm™®

Coolmg and condensation

«— &

Su;igw)ovee UV rays
T >10% K T~10*K
ng ~4x 107 em™ ng ~0.3—107% cm™3 data from Draine 2011
Hot lonized Medium (HIM) lonized HIl regions Stars
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Key questions when studying star formation at the Galactic / ISM scale

How do the the warm diffuse gaz condense into cold dense clouds?
From there, how do these clouds further condense to form stars?

Several answers one can get:

» It's all (or mainly) due to [insert your favorite process here] (usually to pick among gravity,
turbulence or magnetic field)

> It's a bit of everything
> It depends
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Mass assembly of molecular clouds and star formation

Turbulence-Driven Gravity-driven (GHC)

1. Turbulence shapes the density field

2. Small overdensities collapse because of
gravity.

.

» Gravity acts as a conveyor belt that
drive gas accross density layers.
Hoyle 1953, Hartman+ 2001, Vazquez Sedameni
2009,2017,2019,2024
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A bit more on Gravo-turbulent models

PDF of the log density

log p/po
Critical log density.

Krumholz & McKee 2005, Padoan &
Nordlund 2008, Hennebelle & Chabrier
2011, Federrath and Klessen 2012.
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A bit more on Gravo-turbulent models

A These models don't work at high Mach

PDF of the log density

b=
o
[T
w0 —— Padoan & Nordlund, multifreefall
: —— Hennebelle & Chabrier 2011 3
log p/po 107 E ) . 3
Critical log density. . @ simulations ) )
100 10! 10?2
M from Bruc
y+ 2024
Krumholz & McKee 2005, Padoan &

Nordlund 2008, Hennebelle & Chabrier
2011, Federrath and Klessen 2012.
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A bit more on Gravo-turbulent models

PDF of the log density

log p/po
Critical log density.

Krumholz & McKee 2005, Padoan &
Nordlund 2008, Hennebelle & Chabrier
2011, Federrath and Klessen 2012.
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A These models don't work at high Mach

~—— Padoan & Nordlund, multifreefall
—— Hennebelle & Chabrier 2011
10-1 —— New model
-&- simulations

1
10° 10t 10?2
M from Brucy+ 2024

Check new Turbulent support model:
Hennebelle+2024, Brucy+ 2024.
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A bit more on GHC

Véazques-Semadeni+ 20244

Inertial motions
~
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How to distinguish from the two paradigms?

In the Global Hierachical Collapse scenario, the contribution of the gravitational pull needs to
be large.
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How to distinguish from the two paradigms?

In the Global Hierachical Collapse scenario, the contribution of the gravitational pull needs to
be large.

For a given molecular cloud we need to quantify how much gas is:
> gravity-driven

» inflowing into the cloud
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How to distinguish from the two paradigms?

In the Global Hierachical Collapse scenario, the contribution of the gravitational pull needs to
be large.

~

For a given molecular cloud we need to quantify how much gas is:
> gravity-driven

» inflowing into the cloud

We can do it in simulations of the interstellar medium, by tracking the gas
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Application on a ISM simulation

Introduced in Colman+2025

Stratified ISM box simulation

v

Stratified kpc box
ISM cooling/heating

Resolution 4 pc - 1 pc

(103 cm—3)

Supernova and HIl radiation

Sinks form at 2.34 - 10%! g-.cm™—3

Setup: Iffrig+2015,Cooling+2018, Brucy+2020,2023, Colman+2022,2025
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What are we looking at

10
» A giant overdensity of gas 107
> Lifetime = 15 Myr 10_23§,
» Density: from 10723 to 4-107%! g.cm™3 E é’
> CNM mass: 2-10° Mg "
» Size: ~ 200 pc s
» Velocity dispersion: 9 km-s1 10726

x [pc]
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Method

Resimulation of the life of a molecular cloud

> From t; = 74 Myr to
tr = 84 Myr

> At t;, introduction of one
tracer per cell

» Recording of the force
experienced by the tracers
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Method

Cloud-in-cell tracers particle

How do we recognize gravity-driven inflowing gas?
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Method

Cloud-in-cell tracers particle

How do we recognize gravity-driven inflowing gas?

- B} Cloud
2NN

Gas tracer (/ / \ »

- \_/

?grav(tsv te) -

?other(t& te) =
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Method

Cloud-in-cell tracers particle

How do we recognize gravity-driven inflowing gas?

7t - CIOUd te d
//C_L@q /\ ?graV(tSvte) = fts%?t (1)

\ te — ts
/ \//,

(J te —)d
Q_vgm(ts, te) (2)

Gas tracer

?other(ts, te) ==t

e*ts

Gravity-driven: gravity contributed to more than 50 % of the resulting integrated acceleration

dgrav > dother
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Tracers in Ramses?

o) L I B L B, pu
15 8:_ ] » We use velocity-advected tracers
8 | (Pichon+2011, Dubois+2012)
“’E 6F ] » Known for their lack of accuracy
-% A - ] (Genel+2013)
g ] » Other technique: Monte-Carlo tracers
a 2f . (Cadiou+2018) — not suited for force
i . ] recording
°%.0 " IO!ZI 04 06 08 10 » We quantify the error on the density
[0 — Ptracers|/p
[ Error < 15 % for 70 % of the tracers’ mass.
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Tracers in Ramses?

Changes in the code: tracers _memory branch

Goal: Gravitational contribution to the acceleration
» Make it possible to initialize "classical" tracers (again)
» Add new particle arrays (vp_grav, vp_prev, ap_grav)
» Declaration

» Allocation
» Communication

> 1/0 (dump & re-read)
» Update the new arrays with grav contribution (move_fine and synchro_fine)
» Repair and adapt amr2cube and part2cube
Thanks to the headers, the new arrays are directly read by Osyris.

In green: Useful fixes that were ported in Ramses Vanilla.
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Gravity-driven accretion

Where is the gravity-dominated gaz
coming from?

t=74.0 Myr iy

» Density slices

» Red = > 20 % of
gravity-dominated tracers

» White dots = new stars

y [pc]

Answer: A bit from everywhere, with
self-gravity dominated gaz in the
midplane and a significant
contribution from the Galactic
fountain.

z [pc]
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Mass fraction of gravity-driven gas

age of sink [Myr]
10 20

y [pc]

0.15F T

mean density [g / cm?]

0.05 ]

Mass fraction of gravity-driven gas
z [pc]

0.00- L I 1]
10! 102 10
Distance from potential minimum (pc)

A fraction of 10-20 % of the gas is gravity-driven up to 100 pc from the center of the cloud
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But gravity-dominated gaz is slow

T T U
m—all gas
—— mean: 1.3 km/s/Myr

= = gravity-driven gas j
----- mean: 0.8 km/s/Myr

Supernova driven gaz can reach several
4 hundreds of km/s while gravity infall is
limited to 8 to 10 km/s.

] Can it has a significant contribution to the
clouds’ mass assembly?

Mass weighted distribution function

arot [km/s/Myr]
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Mass flow towards across isodensity lines

Within 100 pc of the minimum of potential
nlcm=3]

1071 100 10! 102 102
30 e ‘ T T 7 0.30 100 . : . )
= Total * = = Gravity-driven /dotal 10-
==« Gravity-driven '.
_2r Sink threshold & o255
E; Che = 10-22
2 "CNM" K = _
o
\B 20| = "Molecular gas" S H -0 § g
E %’ 10-23 5
i I —_
B o152 & z
H ° ES g
o o 1024 %
= “6 S
" H0.10 =
i S g
> =
= % 10*25
H0.05 &
10*25
*,"m 0.00 _100, . k . %
10 P100 ~50 0 50 100
Density [g / cm?] xIpc]

10 % of the gas inflowing onto the GMC is gravity-driven. This fraction rise to 30 % inside
the clouds.
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Stratified potential vs Self-gravity

Proxy: looks at gas for which the movement parallel to the plane is gravity-driven

Mass inflow rate [ Mo / kyr]
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stronger in dense regions

Stratified potential dominates the gravity-driven gas at large scales while self-gravity is
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Time evolution

Within 100 pc of the minimum of potential Within 100 pc of the minimum of potential
nlcm™3] ncm=3]
107t 10° 10t 10?2 103 107t 10° 10t 102 103
30 T T T T T 045 T T T T
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[ The fraction of gravity-driven increases as the integration time increase ]
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Contribution of the gravity-driven gas to the linewidth

p>10"%2 g/cm?
0.175F T T T T T =
—All
0.150 F = = Gravity-dominated 3

= non gravity-dominate

So0.125F L .
g » Linewidth over a 100 pc wide area
& 0.100 |- _
S onsk » Gravity-driven gas: 10 % of the
£ ool ] variance of the velocity
% oask » No change of the FWHM

0.000 L L L L L E

-10 -5 0 5 10
Vx [km/s]

At 100pc scale, the contribution of gravity-driven gas to the linewidth is negligible
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Perspective: towards an observational criterion

50

25

y [pc]
o

-25

~5%50
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Conclusions
Paper under review: Brucy+ 2025 (Open Journal of Astrophysics)

» Global Hiearchical Collapse happens, with
gravity-dominated gas up to 100 pc from the
center of the cloud,

» Only 10 % on the inflowing gas is
gravity-dominated — not the main driver of
cloud mass assembly.

» The fraction of density inflowing gas
progressively increases with density

\

Perspectives
» Do a statistical study, look at larger and small scales
» Derive a criterion that can be used in observations
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Phase decomposition

based on temperature
10°
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Mass [My ]
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Phase decomposition

based on temperature

Within 200 pc, within initial phase Within 200 pc, within initial phase
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Cloud properties
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