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The matter cycle in the ISM

data from Draine 2011 
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Key questions when studying star formation at the Galactic / ISM scale

How do the the warm diffuse gaz condense into cold dense clouds?
From there, how do these clouds further condense to form stars?

Several answers one can get:
▶ It’s all (or mainly) due to [insert your favorite process here] (usually to pick among gravity,

turbulence or magnetic field)
▶ It’s a bit of everything
▶ It depends
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Mass assembly of molecular clouds and star formation

Turbulence-Driven

1. Turbulence shapes the density field
2. Small overdensities collapse because of

gravity.

Gravity-driven (GHC)

▶ Gravity acts as a conveyor belt that
drive gas accross density layers.

Hoyle 1953, Hartman+ 2001, Vazquez Sedameni
2009,2017,2019,2024
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A bit more on Gravo-turbulent models

Star forming gas

Critical log density

PDF of the log density

Krumholz & McKee 2005, Padoan &
Nordlund 2008, Hennebelle & Chabrier
2011, Federrath and Klessen 2012.

. These models don’t work at high Mach

Check new Turbulent support model:
Hennebelle+2024, Brucy+ 2024.
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A bit more on GHC
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How to distinguish from the two paradigms?

In the Global Hierachical Collapse scenario, the contribution of the gravitational pull needs to
be large.

For a given molecular cloud we need to quantify how much gas is:
▶ gravity-driven
▶ inflowing into the cloud

We can do it in simulations of the interstellar medium, by tracking the gas
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Application on a ISM simulation
Introduced in Colman+2025

Stratified ISM box simulation

▶ Stratified kpc box
▶ ISM cooling/heating
▶ Supernova and HII radiation
▶ Resolution 4 pc - 1 pc
▶ Sinks form at 2.34 · 1021 g·cm−3

(103 cm−3)

Setup: Iffrig+2015,Cooling+2018, Brucy+2020,2023, Colman+2022,2025
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What are we looking at

▶ A giant overdensity of gas
▶ Lifetime ≈ 15 Myr
▶ Density: from 10−23 to 4 · 10−21 g·cm−3

▶ CNM mass: 2 · 105 M⊙
▶ Size: ≈ 200 pc
▶ Velocity dispersion: 9 km·s−1
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Method
Resimulation of the life of a molecular cloud

▶ From ti = 74 Myr to
tf = 84 Myr

▶ At ti , introduction of one
tracer per cell

▶ Recording of the force
experienced by the tracers
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Method
Cloud-in-cell tracers particle

How do we recognize gravity-driven inflowing gas?

Cloud

Gas tracer

s

e
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s

e

−→a grav(ts , te) =

∫ te
ts

−→g dt
te − ts

(1)

−→a other(ts , te) =

∫ te
ts

−→a dt
te − ts

−−→v grav(ts , te) (2)
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Method
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How do we recognize gravity-driven inflowing gas?
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−→a grav(ts , te) =

∫ te
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te − ts

(1)

−→a other(ts , te) =

∫ te
ts

−→a dt
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Gravity-driven: gravity contributed to more than 50 % of the resulting integrated acceleration

agrav > aother
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Tracers in Ramses?
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n ▶ We use velocity-advected tracers

(Pichon+2011, Dubois+2012)
▶ Known for their lack of accuracy

(Genel+2013)
▶ Other technique: Monte-Carlo tracers

(Cadiou+2018) → not suited for force
recording

▶ We quantify the error on the density

Error < 15 % for 70 % of the tracers’ mass.
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Tracers in Ramses?
Changes in the code: tracers_memory branch

Goal: Gravitational contribution to the acceleration
▶ Make it possible to initialize "classical" tracers (again)
▶ Add new particle arrays (vp_grav, vp_prev, ap_grav)

▶ Declaration
▶ Allocation
▶ Communication
▶ I/O (dump & re-read)

▶ Update the new arrays with grav contribution (move_fine and synchro_fine)
▶ Repair and adapt amr2cube and part2cube

Thanks to the headers, the new arrays are directly read by Osyris.

In green: Useful fixes that were ported in Ramses Vanilla.
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Gravity-driven accretion

Where is the gravity-dominated gaz
coming from?
▶ Density slices
▶ Red = > 20 % of

gravity-dominated tracers
▶ White dots = new stars

Answer: A bit from everywhere, with
self-gravity dominated gaz in the
midplane and a significant
contribution from the Galactic
fountain.
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Mass fraction of gravity-driven gas
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A fraction of 10-20 % of the gas is gravity-driven up to 100 pc from the center of the cloud
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But gravity-dominated gaz is slow
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hundreds of km/s while gravity infall is
limited to 8 to 10 km/s.

Can it has a significant contribution to the
clouds’ mass assembly?
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Mass flow towards across isodensity lines
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10 % of the gas inflowing onto the GMC is gravity-driven. This fraction rise to 30 % inside
the clouds.
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Stratified potential vs Self-gravity
Proxy: looks at gas for which the movement parallel to the plane is gravity-driven
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Stratified potential dominates the gravity-driven gas at large scales while self-gravity is
stronger in dense regions
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Time evolution
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The fraction of gravity-driven increases as the integration time increase
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Contribution of the gravity-driven gas to the linewidth

10 5 0 5 10
vx [km/s]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Di
st

rib
ut

io
n 

fu
nc

tio
n

> 10 22 g/cm3

All
Gravity-dominated
non gravity-dominated

▶ Linewidth over a 100 pc wide area
▶ Gravity-driven gas: 10 % of the

variance of the velocity
▶ No change of the FWHM

At 100pc scale, the contribution of gravity-driven gas to the linewidth is negligible
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Perspective: towards an observational criterion
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Conclusions
Paper under review: Brucy+ 2025 (Open Journal of Astrophysics)

▶ Global Hiearchical Collapse happens, with
gravity-dominated gas up to 100 pc from the
center of the cloud,

▶ Only 10 % on the inflowing gas is
gravity-dominated → not the main driver of
cloud mass assembly.

▶ The fraction of density inflowing gas
progressively increases with density

Perspectives
▶ Do a statistical study, look at larger and small scales
▶ Derive a criterion that can be used in observations
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Phase decomposition
based on temperature
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Phase decomposition
based on temperature
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Cloud properties
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