
DUST GROWTH IN RAMSES
Coupling coagulation and dust dynamics in RAMSES

Ugo Lebreuilly & Benoît Commerçon, Patrick Hennebelle, Maxime Lombart, Anaëlle Maury, Pierre Marchand, 
Valentin Vallucci-Goy, Gabriel Verrier

SNO RAMSES 2025

1



WHAT IS INTERSTELLAR DUST ?

➤ Solid particles made of carbon, silicates, iron … 

➤ 1 % of the mass 

➤ Distribution in the diffuse ISM (MRN, Mathis et al., 1977) 

 

➤ Larger grains in denser regions ? 

1-10 microns in dense cores (Pagani et al., 2010) 

10-100 microns around protostars (Kataoka et al., 2015; Sadavoy et al., 2018a, b, 2019; Galametz et al., 
2019) 

1-10 mm in protoplanetary disks 

dn(s)
ds

∝ s−3.5; s ∈ [5 , 250] nm
Interplanetary dust grain (Jessberger et al., 2001)
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WHY DUST MATTERS ?

Observations 
Heating/cooling 
Chemistry

Planetesimal/planet formationObservations 
Magnetic field 
Turbulence 
Heating/cooling

Sub-structures

Initial conditions

Stellar/protostellar  
feedback

Initial conditions

ISM/galaxies

Disks
Planets

Interstellar dust
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WHY STUDYING THE DUST SIZE DISTRIBUTION DURING THE COLLAPSE ?

Large disks             Angular momentum

Small disk           Magnetic braking

Mediation by the charged particles 
(Dust, ions & electrons): 

Non-ideal MHD

Small grains

Large grains
M

agnetic conductivity
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WHY STUDYING THE DUST SIZE DISTRIBUTION DURING THE COLLAPSE ?

Marchand et al. 2019 5



WHY STUDYING THE DUST SIZE DISTRIBUTION DURING THE COLLAPSE ?

Lebreuilly et al. 2020 Dust ratio variations (log) 6



COAGULATION/FRAGMENTATION: BASIC PRINCIPLE

Coagulation Fragmentation

Low energy collisions High energy collisions

In reality :  

bouncing, gas-grain erosion, grain-grain erosion, grain restructuration, mass transfer… (see e.g. Gütter et al. 2010) 
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DUST DYNAMICS : CASE OF THE FULL MULTIFLUID

8See Saffman 1962

∂ρg

∂t
+ ∇ ⋅ ρg ⃗vg = 0

∂ρg ⃗vg

∂t
+ ∇(ρg ⃗vg ⊗ ⃗vg+Pg𝕀) = ρg

⃗f+
ρd

ts
⃗Δv

∂ρd

∂t
+ ∇ ⋅ ρd ⃗vd = 0

∂ρd ⃗vd

∂t
+ ∇ρd ⃗vd ⊗ ⃗vd = ρd

⃗f−
ρd

ts
⃗Δv

Gas

Dust

Drag force :  is the stopping timets

See Gabriel talk for the multifluid implementation



DUST DYNAMICS : TERMINAL VELOCITY APPROXIMATION IN THE MONOFLUID FORMALISM
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See Laibe & Price 2014a,b,c; Lebreuilly et al. 2019

v ≡
∑k ρd,kvd,k + ρgvg

ρ

ρ ≡ ∑
k

ρd,k + ρg



TERMINAL VELOCITY SOLVER OF RAMSES

Lebreuilly et al. 2019
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Advantage : 
Very good for small grains 
1 equation per dust species 

Drawback: 
Bad for large grains
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Diffusion (DUSTYDIFFUSE)

Shock (DUSTYSHOCK)

Damping of sound wave in a gas-dust 
mixture (DUSTYWAVE)



IS THE DUST-TO-GAS RATIO CONSTANT IN MOLECULAR CLOUDS ?

Dust grains of size ~ 10 microns decouple efficiently in turbulent GMCs-like environments (Commerçon et al. 2023) 
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IS THE DUST-TO-GAS RATIO CONSTANT IN MOLECULAR CLOUDS ?
Smaller grains are very well coupled to the gas 

Variations only when density is negligible
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ARE PROTOPLANETARY DISKS BORN DUST RICH ?

Disk

Dust ratio variations [log]

(Lebreuilly et al. 2020)
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CAN CURRENT-SHEETS DRIVE DUST-TO-GAS RATIO VARIATIONS ?

Dust ratio variations [log]

(Lebreuilly et al. 2023b)
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CAN CURRENT-SHEETS DRIVE DUST-TO-GAS RATIO VARIATIONS ?

Dust ratio variations [log]

(Lebreuilly et al. 2023b)
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Δ ⃗v ≡ ts,k
∇Pn − ⃗J × ⃗B

ρ



DUST COAGULATION IN THE MONODISPERSE APPROACH
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Dust dynamics 

(for a single k)
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3 tcoag,k

Lebreuilly et al. in prep



MONODISPERSE IMPLEMENTATION IN RAMSES
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Lebreuilly et al. in prep



HOW DO ALL METHODS COMPARE TOGETHER
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Lebreuilly et al. in prep

See Maxime’s talk for Smoluchowski



THE ISSUE WITH THE MONODISPERSE APPROACH: ABUNDANCES
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MONOCOALA
See Maxime’s talk for Smoluchowski (COALA)



A MODEL WITH B FIELD AND ROTATION - TIME EVOLUTION OF SIZE
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Terminal velocity approx. Multifluid



CONCLUSIONS
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➤ We have implemented a monofluid solver for small grain in RAMSES 

➤ It’s fast, efficient, works for multiple dust species 

➤ The solver was used in various astrophysics contexts namely: 

➤ Protostellar collapses 

➤ Molecular clouds 

➤ Protoplanetary disks 

➤ We now extend our methods: 

➤ Dust growth in the monodisperse approach 

➤ Full dust growth : see Maxime’s talk 

➤ Full multifluid : see Gabriel’s talk


