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DUST GROWTH IN RAMSES
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WHAT IS INTERSTELLAR DUST ?
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» Solid particles made of carbon, silicates, iron ...
» 1 % of the mass

» Distribution in the diffuse ISM (MRN, Mathis et al., 1977)
dn(s)
ds

x s 305 E [5 ] 25()] nm

Interplanetary dust grain (Jessberger et al., 2001)

> Larger grains in denser regions ?
1-10 microns in dense cores (Pagani et al., 2010)

10-100 microns around protostars (Kataoka et al., 2015; Sadavoy et al., 2018a, b, 2019; Galametz et al.,
2019)

1-10 mm in protoplanetary disks



WHY DUST MATTERS ?

) '
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Interstellar dust

Observations Planetesimal/planet formation

Magnetic field
Turbulence
Heating/cooling

Observations
Heating/cooling
Chemistry

Initial conditions

-

Initial conditions

-

Stellar/protostellar

feedback Sub-structures

ISM/galaxies Planets

Disks



WHY STUDYING THE DUST SIZE DISTRIBUTION DURING THE COLLAPSE ?

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Large disks Angular momentum

Large grains

Mediation by the charged particles
(Dust, ions & electrons):
Non-ideal MHD

ANAIONPUOD Dljsube|N

Small grains

Small disk Magnetic braking
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COAGULATION/FRAGMENTATION: BASIC PRINCIPLE

Coagulation Fragmentation
o
o0—@ 00—

Low energy collisions High energy collisions

In reality :

bouncing, gas-grain erosion, grain-grain erosion, grain restructuration, mass transfer... (see e.g. Giitter et al. 2010)
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DUST DYNAMICS : CASE OF THE FULL MULTIFLUID
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See Saffman 1962 Drag force : £ is the stopping time 8



DUST DYNAMICS : TERMINAL VELOCITY APPROXIMATION IN THE MONOFLUID FORMALISM
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dust
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Damping of sound wave in a gas
mixture (DUSTYWAVE
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TERMINAL VELOCITY SOLVER OF RAMSES
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IS THE DUST-T0-GAS RATIO CONSTANT IN MOLECULAR CLOUDS ?
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IS THE DUST-T0-GAS RATIO CONSTANT IN MOLECULAR CLOUDS ?
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Smaller grains are very well coupled to the gas
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ARE PROTOPLANETARY DISKS BORN DUST RICH ? eoreviy et at. 2020

Gas (edge-on) Dust (edge-on)

Gas (mid-plane) Dust (mid-plane)
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CAN CURRENT-SHEETS DRIVE DUST-T0-GAS RATIO VARIATIONS ? (coreiy et ar. 20031
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CAN CURRENT-SHEETS DRIVE DUST-

GAS RATIO VARIATIONS 7 coreviy et ar. 20231
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DUST COAGULATION IN THE MONODISPERSE APPROACH  Leoreviy et . in prep
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MONODISPERSE IMPLEMENTATION IN RAMSES  Leoreuity tat. in prep
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-16.7 -15.0 -13.3 -11.7 -10.0 -3.6 -2.4 -1.2 0.1 1.3
log(Density) [g/cm3] log(a) [mm]

17



HOW DO ALL METHODS COMPARE TOGETHER  Leoreuiy et . in prep

See Maxime’s talk for Smoluchowski
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Ng [cm™—3]

THE ISSUE WITH THE MONODISPERSE APPROACH: ABUNDANCES

See Maxime’s talk for Smoluchowski (COALA)
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A MODEL WITH B FIELD AND ROTATION - TIME EVOLUTION OF SIZE

Terminal velocity approx. Multifluid
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CONCLUSIONS

» We have implemented a monofluid solver for small grain in RAMSES
» It’s fast, efficient, works for multiple dust species
» The solver was used in various astrophysics contexts namely:
» Protostellar collapses
» Molecular clouds
» Protoplanetary disks
» We now extend our methods:
» Dust growth in the monodisperse approach
» Full dust growth : see Maxime’s talk

» Full multifluid : see Gabriel’s talk
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