
Romain Teyssier

mini-ramses

Romain Teyssier

Romain Teyssier

mini-ramses: data structure

• Global oct indexing uses a quadruplet hash_key=(l,i,j,k).

• Hash table: igrid=get_grid(hash_key)
• Octs are pulled from memory using a simple hash function, collisions are

handled using a linked list (same a python dictionary)

• Octs are sorted in memory first per refinement level, then per Hilbert key (using
a fast radix sort)

• Octs can be grouped in blocks called superocts

• Perfect load balancing at every time step and for each level

• Remote information is managed (using MPI) via a software cache
• Use only 10’000 ghost octs to store (temporarily) remote information.
• Use many small MPI messages while computing
• Use pre-fetch for optimized communications (with a larger cache size)

Romain Teyssier

mini-ramses: data structure

• Optimized execution using clean octs, dirty octs and ghost octs

• Clean octs have all neighbors in local memory

• Dirty octs have at least one neighbor in:
• Physical boundaries
• Other MPI domain
• Coarser refinement level

• Ghost octs are created temporarily in the cache memory from:
• Physical BC rules (reflexive, zero gradient, imposed…)
• MPI communications
• Coarse-to-fine interpolation

• Use GPU or OpenMP asynchronicity to:
• Build the cache while updating the clean octs
• Then update the dirty octs

Romain Teyssier

mini-ramses: initial conditions

• Various predefined initial conditions
• Use condinit.f90 initial condition setup file.
• Default using regions and namelist block INIT_PARAMS
• Predefined ICs: INIT=COEUR, INSTA, DOUBLEMACH, OT, PONO, ABC,

LOOP…
• PATCH=../patch/init/halo and PATCH=../patch/init/merger

• MUSIC initial conditions using filetype=‘grafic’ or filetype=‘grafic_zoom’

• GADGET initial conditions using filetype=‘gadget’
• Generated using e.g. the DICE code

• RAMSES initial conditions using filetype=‘ramses’
• Reads RAMSES output files (not restart files)
• Still need to specify the initial magnetic field separately

Romain Teyssier

mini-ramses: boundary conditions

• Various boundary conditions (default is periodic)
• Arbitrary box geometry using oct Cartesian indexing at bound_levelmin:
• Reflective, zero gradient, imposed…
• Isolated for gravity solver (FMM, MG)

Example from sedov2d.nml

bound_levelmin=3
box_size=1.0
box_xmin=1
box_ymin=1
box_xmax=-1
box_ymax=-1

periodic=.false.,.false.
nbound=4
bound_dir=1,1,2,2
bound_type=1,1,1,1
bound_shift=1,-1,1,-1
bound_xmin= 0,-1, 0, 0
bound_xmax= 1, 0, 0, 0
bound_ymin= 1, 1, 0,-1
bound_ymax=-1,-1, 1, 0

Romain Teyssier

Double Mach reflection (boundary conditions)

Romain Teyssier

mini-ramses: physics routines implemented
• MUSCL-Hancock hydro solver (minmod, moncen, LLF, HLL, HLLC)
• MHD solver now merged with hydro solver (HLLD, Roe)
• PIC solver (CIC, TSC, PCS)
• CG and MG gravity solver
• Star formation recipe with 3 different models
• Dual energy update using entropy
• Thermal supernova feedback
• Mechanical supernova feedback
• Subgrid turbulence LES model
• Turbulence driving
• Equilibrium cooling, constant UV background with self-shielding
• Halo finder, merger tree (Rayan Ait-Ekioui)
• Light cone (Takanori Codron-Akieda)
• Non-equilibrium cooling with H and He chemistry (Joke Rosdahl)
• RAMSES-RT (Joki Rosdahl)
• Sink particles (Ziyong Wo, Nick Choustikov, William Groger)
• Dust MHD/PIC (Eric Moseley)
• FMM gravity solver (Jun-Young Lee)

Romain Teyssier

mini-ramses: clump finder, merger tree, light cone

• Clump finder
• New PHEW implementation
• Central halos and satellite halos
• Particle unbinding

• Merger tree
• On the fly using tracer particles
• Collect host clump properties in

post processing

• Rayan Ait-Ekioui, Takanori Cordon-Akieda, James Sunseri

Romain Teyssier

mini-ramses: sink particles and M1-RT

• Sink formation and evolution
• Seeding using clump finder (Ziyong Wu)
• Accretion and feedback (Nick Choustikov)
• Merging (William Groger)

• Radiative transfer with M1 solver (Joki Rosdahl)

Romain Teyssier

mini-ramses: initial conditions

• 1D tests:
• HYDRO: advect1d.nml, blast1d.nml, sedov1d.nml, tube1d.nml
• MHD: brio_wu.nml, dai_woodward.nml

• 2D tests:
• HYDRO: sedov2d.nml, double_mach.nml, rt.nml
• MHD: loop.nml, ot.nml, current_sheet.nml
• RT: stromgren2d.nml, beam2d.nml, shadow2d.nml

• 3D tests:
• N-BODY: dmo.nml, dmo_zoom.nml
• HYDRO: sedov3d.nml, coeur.nml, cosmo.nml, cosmo_zoom.nml, halo.nml,

merger.nml, dice.nml
• MHD: pono.nml, abc.nml, halo_mhd.nml
• SINK: bondi.nml, agn_jet.nml

Romain Teyssier

Current sheet (MHD)

Romain Teyssier

• New output format
• access=‘stream’ python read using numpy.fromfile
• Backup frequency bkp_timrs_hrs=2 and bkp_modulo=3
• Restart folder: double precision, face-centered magnetic field (6 vars)
• You can change the number of cpu at restart
• Output folder: single precision, cell-centered magnetic field (3 vars)
• You can specify the number of files per output folder

• Default nfile=1 with 1 nfile ncpu

• Maximum level 64 using HILBERT=3 (no time penalty).

≤ ≤

mini-ramses: new features

Romain Teyssier

mini-ramses: new features

• Makefile:
• make NDIM=3 MPI=1 DEBUG=1 UNITS=MERGER GRAV=1

PATCH=../patch/init/merger NPSCAL=2 MHD=1

• cmake also available:
• cmake .. -DNDIM=3 -DINIT=PONO -DMHD=1

• NENER=0 implemented but not tested
• 5 hydro variables for NDIM=1, 2 and 3 and also for MHD
• NPSCAL=0 for additional passive scalars

• Python package miniramses.py (reading and plotting)
• Python utils amr2img.py, map2img.py, run2img.py, debug.py, history.py,

log.py, sfr.py…

• F90 utils amr2map.f90 and part2map.f90

Romain Teyssier

mini-ramses: galactic dynamo in a cooling halo

Romain Teyssier

mini-ramses: cosmological galaxy formation

Romain Teyssier

mini-ramses: software engineering

• https://bitbucket.org/rteyssie/mini-ramses

• GPU hydro kernel prototype developed in Nvidia Fortran by Bob Caddy
(Princeton Research Software Engineer). See folder mini-ramses/gpu

• Princeton Open Hackathon with Nvidia in June 2025 to complete the hydro
kernel (MPI). No AMR yet.

• 2 billion cell updates per GPU per second (A100) in single precision
• 250 million cell updates per CPU-node per second (AMD 64 cores)

• Folder mini-ramses/doc

• I/O options to implement in the future:
• Frequency of variables at run time? Other derived variables?
• Particle birth index sorting or particle halo membership sorting?
• Cell Hilbert index sorting or cell halo membership sorting?

